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1. Introduction

Algebras have played an important role in pure and applied mathematics and
have its comprehensive applications in many aspects including dynamical systems
and genetic code of biology (See [1, 2, 3, 4]). Starting from the four DNA bases
order in the Boolean lattice, Sáanchez et al. [5] proposed a novel Lie Algebra of the
genetic code which shows strong connections among algebraic relationship, codon
assignments and physicochemical properties of amino acids. A BCK/BCI-algebra
(See [6, 7, 8]) is an important class of logical algebras introduced by Iséki and was
extensively investigated by several researchers. Jun and Song [9] introduced the no-
tion of BCK-valued functions and investigated several properties. They established
block-codes by using the notion of BCK-valued functions, and shown that every
finite BCK-algebra determines a block-code.

The aim of this paper is to introduce the notion of inferior mapping by using par-
tially ordered sets, and apply it to BCK/BCI-algebras. Using the inferior mapping,
we introduce the notions of inferior subalgebras and (commutative) inferior ideals in
BCK/BCI-algebras, and investigate related properties. We discuss relations among
an inferior subalgebra, an inferior ideal and a commutative inferior ideal. We provide
conditions for an inferior mapping to be an inferior ideal. We also provide conditions
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for an inferior ideal to be a commutative inferior ideal. We establish an extension
property for a commutative inferior ideal.

2. Preliminaries

We display basic definitions and properties of BCK/BCI-algebras that will be
used in this paper. For more details of BCK/BCI-algebras, we refer the reader to
[6] and [8].

An algebra X := (X; ∗, 0) of type (2, 0) is called a BCI-algebra, if it satisfies the
following conditions:

(I) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),
(II) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),

(III) (∀x ∈ X) (x ∗ x = 0),
(IV) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

If a BCI-algebra X satisfies the following identity:

(V) (∀x ∈ X) (0 ∗ x = 0),

then X is called a BCK-algebra.
Any BCK/BCI-algebra X satisfies the following conditions:

(∀x ∈ X) (x ∗ 0 = x) ,(2.1)

(∀x, y, z ∈ X) (x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x) ,(2.2)

(∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y) ,(2.3)

(∀x, y, z ∈ X) ((x ∗ z) ∗ (y ∗ z) ≤ x ∗ y)(2.4)

where x ≤ y if and only if x ∗ y = 0.
A BCK-algebra X is said to be commutative, if x ∧ y = y ∧ x for all x, y ∈ X,

where x ∧ y = y ∗ (y ∗ x).
A nonempty subset S of a BCK/BCI-algebra X is called a subalgebra of X , if

x ∗ y ∈ S for all x, y ∈ S. A subset A of a BCK/BCI-algebra X is called an ideal of
X , if it satisfies:

0 ∈ A,(2.5)

(∀x, y ∈ X) (x ∗ y ∈ A, y ∈ A ⇒ x ∈ A) .(2.6)

A subset A of a BCK-algebra X is called a commutative ideal of X , if it satisfies
(2.5) and

(2.7) (∀x, y, z ∈ X) ((x ∗ y) ∗ z ∈ A, z ∈ A ⇒ x ∗ (y ∗ (y ∗ x)) ∈ A) .

3. Inferior mappings

Let X be a nonempty set and let U be a partially ordered set with the partial
ordering - and the last element θ. Then the statement

a - b is read “a precedes b”

In this context, we also write:

b % a means a - b; and read “b succeeds a”,
a ≺ b means a - b and a 6= b; and read “a strictly precedes b”,
b � a means a ≺ b; and read “b strictly succeeds a”.

2
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We consider a pair (f,X) on (U,-), where f : X → P(U) is a mapping and P(U)
is the power set of U . Define a mapping

(3.1) f̃ : X → U, x 7→
{

inf f(x) if ∃ inf f(x)
θ if @ inf f(x) or f(x) = ∅

which is called the inferior mapping of X related to the pair (f,X) on (U,-).

Example 3.1. Let U = {1, 2, 3, 4, 6, 8, 9, 12, 18, 24} be ordered by

x - y ⇔ y divides x.

The Hasse diagram of U appears in Figure 1.
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Figure 1

For a set X = {a, b, c, d}, let (f,X) be a pair on (U,-) where f is given as follows:

f : X → P(U), x 7→


{2, 3, 4, 6} if x = a
{4, 6, 8, 12} if x = b
{1, 3, 6, 9} if x = c
{8, 12, 18} if x = d.

Then the inferior mapping f̃ of X related to the pair (f,X) on (U,-) is described

as follows: f̃(a) = 12, f̃(b) = 24 and f̃(c) = 18, but f̃(d) = 1 because there does not
exist the infimum of f(d).

Example 3.2. For any positive integer m, we will let Dm denote the set of divisors
of m ordered by divisibility. The Hasse diagram of

D36 = {1, 2, 3, 4, 6, 9, 12, 18, 36}
appears in Figure 2.
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For a set X = {a1, a2, a3, a4, a5, a6}, let (f,X) be a pair on (U,-) with U = D36 in
which f is defined as follows:

f : X → P(U), x 7→



{1, 2, 3} if x = a1
{2, 3, 6} if x = a2
{6, 9, 12, 18} if x = a3
{12, 36} if x = a4
{4, 6, 9} if x = a5
{2, 6, 12} if x = a6.

Then the inferior mapping of X related to the pair (f,X) on (U,-) is described as

follows: f̃(a1) = f̃(a2) = f̃(a5) = 1, f̃(a3) = 3, f̃(a4) = 12 and f̃(a6) = 2.

Example 3.3. Let U = {a, b, c, d, e, f} be a set with the partial order “-” as
pictured in Figure 3.
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Figure 3

For a set X = {0, 1, 2, 3}, let (f,X) be a pair on (U,-) in which f is defined as
follows:

f : X → P(U), x 7→


{a, b} if x = 0
{a, b, c} if x = 1
{b, c, d, e} if x = 2
{b, c, d, f} if x = 3.

Then the inferior mapping of X related to the pair (f,X) on (U,-) is described as

follows: f̃(0) = b, f̃(1) = c, f̃(2) = e and f̃(3) = f .

Example 3.4. Let U = {1, 2, 3, · · · , 8} be ordered as pictured in Figure 4.
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For a set X = {0, a, b, c, d}, let (f,X) be a pair on (U,-) in which f is defined as
follows:

f : X → P(U), x 7→


{6, 8} if x = 0
{4, 6, 7} if x = a
{2, 3, 5, 6, 7} if x = b
{3, 4, 5, 6} if x = c
{3, 4, 5, 7} if x = d.

Then the inferior mapping of X related to the pair (f,X) on (U,-) is described as

follows: f̃(0) = 6, f̃(a) = 4, f̃(b) = 2, and f̃(c) = f̃(d) = 3.

Let f̃ and g̃ be inferior mappings of X related to pairs (f,X) and (g,X), re-
spectively, on (U,-). Then the union of (f,X) and (g,X) is defined to be the pair
(f ∪ g,X) on (U,-) which is given as follows:

f ∪ g : X → P(U), x 7→ f(x) ∪ g(x).

The intersection of (f,X) and (g,X) is defined to be the pair (f ∩ g,X) on (U,-)
which is given as follows:

f ∩ g : X → P(U), x 7→ f(x) ∩ g(x).

The inferior mapping of X related to the pair (f ∪ g,X) (resp. (f ∩ g,X)) on (U,-)

is called the union (resp. intersection) of f̃ and g̃ and is denoted by f̃ ∪ g (resp.

f̃ ∩ g ). The inferior union of f̃ and g̃ is denoted by f̃ d g̃ and is defined by

f̃ d g̃ : X → U, x 7→ sup{f̃(x), g̃(x)}.(3.2)

The inferior intersection of f̃ and g̃ is denoted by f̃ e g̃ and is defined as follows:

f̃ e g̃ : X → U, x 7→ inf{f̃(x), g̃(x)},(3.3)

where (f̃ e g̃)(x) = θ if inf{f̃(x), g̃(x)} does not exist.

Example 3.5. Consider the poset (U,-) in Example 3.1. Let f̃ be an inferior
mapping of X = {a, b, c, d} which is given in Example 3.1, and let (g,X) be a pair
on (U,-) where g is given as follows:

g : X → P(U), x 7→


{2, 4, 8} if x = a
{1, 3, 6, 9} if x = b
{2, 3, 6} if x = c
{3, 6, 4} if x = d.

Then the union and intersection of (f,X) and (g,X) are described as follows:

f ∪ g : X → P(U), x 7→


{2, 3, 4, 6, 8} if x = a
{1, 3, 4, 6, 8, 9, 12} if x = b
{1, 2, 3, 6, 9} if x = c
{3, 6, 4, 8, 12, 18} if x = d.

and

f ∩ g : X → P(U), x 7→


{2, 4} if x = a
{6} if x = b
{3, 6} if x = c
∅ if x = d

5
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respectively. The (infer) union and (infer) intersection of f̃ and g̃ are appeared in
the Table 1.

Table 1. The (infer) union and (infer) intersection of f̃ and g̃

x a b c d

f̃(x) 12 24 18 1
g̃(x) 8 18 6 12

(f̃ d g̃)(x) 4 6 6 1

(f̃ e g̃)(x) 24 1 18 12

f̃ ∪ g(x) 24 1 18 1

f̃ ∩ g(x) 4 6 6 1

Let f̃ be an inferior mapping of X related to the pair (f,X) on (U,-). For any
α ∈ U , the sets
S(f̃ , α) := {x ∈ X | f̃(x) succeeds α},
P (f̃ , α) := {x ∈ X | f̃(x) preceeds α},
SS(f̃ , α) := {x ∈ X | f̃(x) strictly succeeds α},

and
SP (f̃ , α) := {x ∈ X | f̃(x) strictly preceeds α}

are called the upper α-inferior set, the lower α-inferior set, the strictly upper α-
inferior set, and the strictly lower α-inferior set of f̃ , respectively.

Example 3.6. For the inferior mapping f̃ in Example 3.1, we have

(1) S(f̃ , α) =


{d} if α ∈ {1, 2, 3, 4, 6, 8, 9}
{a, d} if α = 12
{c, d} if α = 18
{a, b, d} if α = 24.

(2) P (f̃ , α) =


U if α = 1
{a, b, c} if α ∈ {2, 3}
{a, b} if α ∈ {4, 6, 12}
{c} if α ∈ {9, 18}
{b} if α ∈ {8, 24}.

(3) SS(f̃ , α) =

 ∅ if α = 1
{d} if α ∈ {2, 3, 4, 6, 8, 9, 12, 18}
{a, d} if α = 24.

(2) SP (f̃ , α) =


{a, b, c} if α ∈ {1, 3}
{a, b} if α ∈ {2, 4, 6}
{b} if α ∈ {8, 12}
{c} if α = 9,
∅ if α ∈ {18, 24}.

6
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Obviously, we have

f̃(x) = inf{α ∈ U | x ∈ P (f̃ , α)}

= sup{α ∈ U | x ∈ S(f̃ , α)}.

Proposition 3.7. Let f̃ be an inferior mapping of X related to the pair (f,X) on
(U,-). For any α ∈ U , we have

(1) S(f̃ ,∅) = P (f̃ , U) = X,

(2) SS(f̃ , α) ⊆ S(f̃ , α) and SP (f̃ , α) ⊆ P (f̃ , α),

(3) SS(f̃ , α) = S(f̃ , α) and SP (f̃ , α) = P (f̃ , α) if and only if there is no x ∈ X
such that f̃(x) = α, that is, α /∈ Im(f̃),

(4) If α, β ∈ Im(f̃) and α 6= β, then S(f̃ , α) 6= S(f̃ , β) and P (f̃ , α) 6= P (f̃ , β),

(5) For any α, β ∈ Im(f̃), if α precedes β, then SS(f̃ , α) ⊇ SS(f̃ , β), S(f̃ , α) ⊇
S(f̃ , β), P (f̃ , α) ⊆ P (f̃ , β), and SP (f̃ , α) ⊆ SP (f̃ , β).

(6) f̃(x) = inf{α ∈ U | x ∈ P (f̃ , α)} = sup{α ∈ U | x ∈ S(f̃ , α)} for all x ∈ X.

Proof. Straightforward. �

Proposition 3.8. Let f̃ be an inferior mapping of X related to the pair (f,X) on

(U,-). For any α, β ∈ U \ Im(f̃), if α strictly precedes β, then

(1) SS(f̃ , α) ⊇ SS(f̃ , β) and SP (f̃ , α) ⊆ SP (f̃ , β),

(2) S(f̃ , α) ⊇ S(f̃ , β) and P (f̃ , α) ⊆ P (f̃ , β).

Proof. Assume that α, β /∈ Im(f̃) and α strictly precedes β.

(1) If x ∈ SS(f̃ , β), then f̃(x) strictly succeeds β. Thus f̃(x) strictly succeeds

α. So x ∈ SS(f̃ , α). Hence SS(f̃ , α) ⊇ SS(f̃ , β). Now if y ∈ SP (f̃ , α), then

f̃(y) strictly precedes α which implies that f̃(y) strictly precedes β. Therefore

SP (f̃ , α) ⊆ SP (f̃ , β).
(2) is induced by (1) and Proposition 3.7textcolorred3). �

4. Applications to BCK/BCI-algebras

Definition 4.1. Let X := (X, ∗, 0) be a BCK/BCI-algebra and let (f,X) be a pair

on (U,-). By an inferior subalgebra of X , we mean the inferior mapping f̃ of X
related to the pair (f,X) on (U,-) such that

(∀x, y ∈ X)
(
f̃(x ∗ y) succeeds the infimum of f̃(x) and f̃(y)

)
.(4.1)

Example 4.2. Let X = {0, a, b, c} be a set with a binary operation ‘∗’ shown in
Table 2.
Then X := (X, ∗, 0) is a BCK-algebra (see [8]). Consider the poset (U,-) which is
given in Example 3.1.

(1) Let (f,X) be a pair on (U,-) where f is given by

f : X → P(U), x 7→


{1, 2} if x = 0
{4, 6, 8} if x = a
{2, 3, 4, 6} if x = b
{1, 2, 3, 6} if x = c.

7
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Table 2. Cayley table for the binary operation ‘∗’

∗ 0 a b c
0 0 0 0 0
a a 0 0 a
b b b 0 b
c c c c 0

Then the inferior mapping of X related to the pair (f,X) on (U,-) is described as

follows: f̃(0) = 2, f̃(a) = 24, f̃(b) = 12 and f̃(c) = 6, and it is an inferior subalgebra
of X .

(2) Let (g,X) be a pair on (U,-) in which g is provided as follows:

g : X → P(U), x 7→

 {2, 4, 6} if x ∈ {0, a}
{1, 3, 6, 9} if x = b
{4, 6, 8, 12} if x = c.

Then the inferior mapping of X related to the pair (g,X) on (U,-) is described
as follows: g̃(0) = g̃(a) = 12, g̃(b) = 18 and g̃(c) = 24, and it is not an inferior
subalgebra of X since g̃(b∗b) = g̃(0) = 12 and inf{g̃(b), g̃(b)} = 18 are noncomparable
and so g̃(b ∗ b) does not succeed the infimum of g̃(b) and g̃(b).

(3) Let (h,X) be a pair on (U,-) in which h is given as follows:

h : X → P(U), x 7→


{2, 4, 6} if x = 0
{8, 12, 18} if x = a
{1, 3, 6, 9} if x = b
{2, 3, 9} if x = c.

Then the inferior mapping of X related to the pair (h,X) on (U,-) is described as

follows: h̃(0) = 12, h̃(a) = 1, and h̃(b) = h̃(c) = 18. Since

h̃(a ∗ a) = h̃(0) = 12 6% 1 = inf{h̃(a), h̃(a)},

f̃ is not an inferior subalgebra of X .

Example 4.3. Let X = {0, 1, 2, a, b} be a set with a binary operation ‘∗’ shown in
Table 3.

Table 3. Cayley table for the binary operation ‘∗’

∗ 0 1 2 a b
0 0 0 0 a a
1 1 0 1 b a
2 2 2 0 a a
a a a a 0 0
b b a b 1 0

8
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Then X := (X, ∗, 0) is a BCI-algebra (see [8]). Consider the poset (U,-) which is
given in Example 3.2. Let (f,X) be a pair on (U,-) where f is defined by

f : X → P(U), x 7→


{36} if x = 0
{2, 3, 6} if x ∈ {1, b}
{12, 18} if x = 2
{3, 6, 9} if x = a.

Then the inferior mapping of X related to the pair (f,X) on (U,-) is described as

follows: f̃(0) = 36, f̃(a) = 3, f̃(b) = f̃(1) = 1 and f̃(2) = 6, and it is an inferior
subalgebra of X .

Proposition 4.4. If f̃ is an inferior subalgebra of a BCK/BCI-algebra X , then f̃(0)

succeeds f̃(x) for all x ∈ X.

Proof. Since x ∗ x = 0 for all x ∈ X, it is clear. �

Theorem 4.5. If f̃ is an inferior subalgebra of a BCK/BCI-algebra X , then the

upper α-inferior set S(f̃ , α) of f̃ is a subalgebra of X for all α ∈ U with S(f̃ , α) 6= ∅.

Proof. Assume that f̃ is an inferior subalgebra of X . Let x, y ∈ S(f̃ , α). Then

f̃(x) and f̃(y) succeed α. It follows from (4.1) that f̃(x ∗ y) succeeds α and that

x ∗ y ∈ S(f̃ , α). Thus S(f̃ , α) is a subalgebra of X . �

Corollary 4.6. If f̃ is an inferior subalgebra of a BCK/BCI-algebra X , then the
set

A := {x ∈ X | f̃(x) = f̃(0)}

is a subalgebra of X .

The following example illustrates Theorem 4.5.

Example 4.7. Consider the inferior subalgebra f̃ of X in Example 4.3. Then the
upper α-inferior set S(f̃ , α) of f̃ is a subalgebra of X for all α ∈ U .

Theorem 4.8. Let f̃ be an inferior mapping of a BCK/BCI-algebra X related to

the pair (f,X) on (U,-) such that there exists the infimum of f̃(x) and f̃(y) for all

x, y ∈ X. If the upper α-inferior set S(f̃ , α) of f̃ is a subalgebra of X for all α ∈ U
with S(f̃ , α) 6= ∅, then f̃ is an inferior subalgebra of X .

Proof. Let x, y ∈ X and β ∈ U be such that inf{f̃(x), f̃(y)} = β. Then f̃(x) and

f̃(y) succeed β, that is, x, y ∈ S(f̃ , β). Thus x ∗ y ∈ S(f̃ , β). So f̃(x ∗ y) % β =

inf{f̃(x), f̃(y)}. Hence f̃(x ∗ y) succeeds the infimum of f̃(x) and f̃(y). Therefore f̃
is an inferior subalgebra of X . �

Theorem 4.9. Let f̃ and g̃ be inferior mappings of a BCK/BCI-algebra X related to
the pair (f,X) and (g,X), respectively, on (U,-) such that there exists the infimum

of f̃(x) and g̃(x) for all x ∈ X. If f̃ and g̃ are inferior subalgebras of X , then the

inferior intersection f̃ e g̃ of f̃ and g̃ is an inferior subalgebra of X .
9
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Proof. Let x, y ∈ X. Then

(f̃ e g̃)(x ∗ y) = inf{f̃(x ∗ y), g̃(x ∗ y)}

% inf{inf{f̃(x), f̃(y)}, inf{g̃(x), g̃(y)}}

= inf{inf{f̃(x), g̃(x)}, inf{f̃(y), g̃(y)}}

= inf{(f̃ e g̃)(x), (f̃ e g̃)(y)},

that is, (f̃ e g̃)(x ∗ y) succeeds the infimum of (f̃ e g̃)(x) and (f̃ e g̃)(y). Thus f̃ e g̃
is an inferior subalgebra of X . �

Definition 4.10. Let X := (X, ∗, 0) be a BCK/BCI-algebra and let (f,X) be a pair

on (U,-). By an inferior ideal of X , we mean the inferior mapping f̃ of X related
to the pair (f,X) on (U,-) which satisfies the following conditions:

(∀x ∈ X)
(
f̃(0) succeeds f̃(x)

)
,(4.2)

(∀x, y ∈ X)
(
f̃(x) succeeds the infimum of f̃(x ∗ y) and f̃(y)

)
.(4.3)

Example 4.11. Let X = {0, 1, 2, 3, 4} be a set with a binary operation ‘∗’ shown
in Table 4.

Table 4. Cayley table for the binary operation ‘∗’

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0
3 3 3 3 0 0
4 4 4 4 3 0

Then X := (X, ∗, 0) is a BCK-algebra (see [8]). Consider the poset (U,-) in Example
3.4. Let (f,X) be a pair on (U,-) where f is defined by

f : X → P(U), x 7→

 {6, 8} if x = 0
{4, 6, 7} if x = 1
{4, 5, 7, 8} if x ∈ {2, 3, 4}.

Then the inferior mapping f̃ of X related to the pair (f,X) on (U,-) is described

as follows: f̃(0) = 6, f̃(1) = 4 and f̃(2) = f̃(3) = f̃(4) = 3. It is routine to verify

that f̃ is an inferior ideal of X .

Example 4.12. Let X = {0, 1, 2, a} be a set with a binary operation ‘∗’ shown in
Table 5.

10
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Table 5. Cayley table for the binary operation ‘∗’

∗ 0 1 2 a
0 0 0 0 a
1 1 0 0 a
2 2 2 0 a
a a a a 0

Then X := (X, ∗, 0) is a BCI-algebra (see [6]). Consider the poset (U,-) which is
given in Example 3.1. Let (f,X) be a pair on (U,-) where f is defined by

f : X → P(U), x 7→


{1} if x = 0
{1, 2, 3} if x = 1
{2, 3, 4, 6} if x = 2
{4, 6, 8} if x = a.

Then the inferior mapping f̃ of X related to the pair (f,X) on (U,-) is described

as follows: f̃(0) = 1, f̃(1) = 6 and f̃(2) = 12 and f̃(3) = 24. It is routine to verify

that f̃ is an inferior ideal of X .

Theorem 4.13. If f̃ is an inferior ideal of a BCK/BCI-algebra X , then the upper

α-inferior set S(f̃ , α) of f̃ is an ideal of X for all α ∈ U with S(f̃ , α) 6= ∅.

Proof. Suppose that f̃ is an inferior ideal of X . Let α ∈ U be such that S(f̃ , α) 6= ∅.

Then there exists x ∈ X such that f̃(x) succeeds α. The transitivity of - and the

condition (4.2) induces that f̃(0) succeeds α. Thus 0 ∈ S(f̃ , α). Let x, y ∈ X be

such that x ∗ y ∈ S(f̃ , α) and y ∈ S(f̃ , α). Then f̃(x ∗ y) and f̃(y) succeed α. Thus

the infimum of f̃(x∗y) and f̃(y) succeed α. It follows from (4.3) and the transitivity

of - that f̃(x) succeeds α and that x ∈ S(f̃ , α). So S(f̃ , α) is an ideal of X . �

Corollary 4.14. If f̃ is an inferior ideal of a BCK/BCI-algebra X , then the set

A := {x ∈ X | f̃(x) = f̃(0)}
is an ideal of X .

Theorem 4.15. Let f̃ be an inferior mapping of a BCK-algebra X related to the
pair (f,X) on (U,-) such that there exists the infimum of f̃(x) and f̃(y) for all

x, y ∈ X. If the upper α-inferior set S(f̃ , α) of f̃ is an ideal of X for all α ∈ U with

S(f̃ , α) 6= ∅, then f̃ is an inferior ideal of X .

Proof. Assume that S(f̃ , α) is an ideal of X for all α ∈ U with S(f̃ , α) 6= ∅. Then

S(f̃ , α) is a subalgebra of X . Let x, y ∈ X. If we take β as the infimum of f̃(x) and

f̃(y), then x, y ∈ S(f̃ , β). It follows that x∗y ∈ S(f̃ , β) and so that f̃(x∗y) succeeds

the infimum of f̃(x) and f̃(y). Thus f̃ is an inferior subalgebra of X , and so f̃(0)

succeeds f̃(x) for all x ∈ X by Proposition 4.4. Now we take ε as the infimum of

f̃(x ∗ y) and f̃(y). Then x ∗ y ∈ S(f̃ , ε) and y ∈ f̃ε. Since S(f̃ , ε) is an ideal of X , it

follows that x ∈ S(f̃ , ε) and so that f̃(x) succeeds the infimum of f̃(x ∗ y) and f̃(y).

Hence f̃ is an inferior ideal of X . �
11
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Theorem 4.16. If f̃ and g̃ are inferior ideals of a BCK/BCI-algebra X , then the

inferior intersection f̃ e g̃ of f̃ and g̃ is an inferior ideal of X .

Proof. For any x ∈ X, we have

(f̃ e g̃)(0) = inf{f̃(0), g̃(0)} % inf{f̃(x), g̃(x)} = (f̃ e g̃)(x),

that is, (f̃ e g̃)(0) succeeds (f̃ e g̃)(x). Now, let x, y ∈ X. Then

(f̃ e g̃)(x) = inf{f̃(x), g̃(x)}

% inf{inf{f̃(x ∗ y), f̃(y)}, inf{g̃(x ∗ y), g̃(y)}}

= inf{inf{f̃(x ∗ y), g̃(x ∗ y)}, inf{f̃(y), g̃(y)}}

= inf{(f̃ e g̃)(x ∗ y), (f̃ e g̃)(y)}.

Thus (f̃ e g̃)(x) succeeds the infimum of (f̃ e g̃)(x ∗ y) and (f̃ e g̃)(y). So f̃ e g̃ is an
inferior ideal of X . �

Proposition 4.17. Every inferior ideal f̃ of X , where X := (X, ∗, 0) is a BCK/BCI-
algebra, satisfies:

(∀x, y ∈ X)
(
x ≤ y ⇒ f̃(x) succeeds f̃(y)

)
.(4.4)

Proof. Let x, y ∈ X be such that x ≤ y. Using (4.3) and (4.2), we have

f̃(x) % inf{f̃(x ∗ y), f̃(y)} = inf{f̃(0), f̃(y)} = f̃(y),

that is, f̃(x) succeeds f̃(y) for all x, y ∈ X with x ≤ y. �

Theorem 4.18. In a BCK-algebra X , every inferior ideal of X is an inferior sub-
algebra on X .

Proof. Let f̃ be an inferior ideal of X . Since x ∗ y ≤ x for all x, y ∈ X, it follows
from Proposition 4.17 and (4.3) that

f̃(x ∗ y) % f̃(x) % inf{f̃(x ∗ y), f̃(y)} % inf{f̃(x), f̃(y)},

that is, f̃(x ∗ y) succeeds the infimum of f̃(x) and f̃(y). Then f̃ is an inferior
subalgebra of X . �

The converse of Theorem 4.18 may not be true as seen in the following example.

Example 4.19. Let X = {0, 1, 2, 3} be a set with a binary operation ‘∗’ shown in
Table 6.

Table 6. Cayley table for the binary operation ‘∗’

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 1
2 2 1 0 2
3 3 3 3 0

12
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Then X := (X, ∗, 0) is a BCK-algebra (see [8]). Let U = {a, b, c, d, e, f, g} be ordered
as pictured in Figure 3. r
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Figure 3

Let (f,X) be a pair on (U,-) where f is given as follows:

f : X → P(U), x 7→

 {c, f} if x = 0
{b, d, f} if x = 2
{a, b, c, d} if x ∈ {1, 3}.

Then the inferior mapping f̃ of X related to the pair (f,X) on (U,-) is described as

follows: f̃(0) = c, f̃(2) = b and f̃(1) = f̃(3) = a. By routine calculations, we know

that f̃ is an inferior subalgebra of X , but it is not an inferior ideal of X because
f̃(1) does not succeed the infimum of f̃(1 ∗ 2) and f̃(2).

Proposition 4.20. Every inferior ideal f̃ of a BCK/BCI-algebra X satisfies the
following assertion.

(∀x, y, z ∈ X)
(
x ∗ y ≤ z ⇒ f̃(x) succeeds the infimum of f̃(y) and f̃(z)

)
.(4.5)

Proof. Let x, y, z ∈ X be such that x ∗ y ≤ z. Then (x ∗ y) ∗ z = 0, and so

f̃(x ∗ y) % inf{f̃((x ∗ y) ∗ z), f̃(z)} = inf{f̃(0), f̃(z)} = f̃(z)

by (4.3) and (4.2). It follows that

f̃(x) % inf{f̃(x ∗ y), f̃(y)} % inf{f̃(z), f̃(y)}

which shows that f̃(x) succeeds the infimum of f̃(y) and f̃(z) for all x, y, z ∈ X with
x ∗ y ≤ z. �

Theorem 4.21. Let f̃ be the inferior mapping of a BCK/BCI-algebra X related to

the pair (f,X) on (U,-). If f̃ satisfies two conditions (4.2) and (4.5), then f̃ is an
inferior ideal of X .

Proof. Since x ∗ (x ∗ y) ≤ y for all x, y ∈ X, it follows from (4.5) that f̃(x) succeeds

the infimum of f̃(x ∗ y) and f̃(y) for all x, y ∈ X. Then f̃ is an inferior ideal of
X . �

13



Y. B. Jun et al./Ann. Fuzzy Math. Inform. x (202y), No. x, xxx–xxx

5. Commutative inferior ideals

Definition 5.1. Let X := (X, ∗, 0) be a BCK-algebra and let (f,X) be a pair
on (U,-). By a commutative inferior ideal of X , we mean the inferior mapping

f̃ of X related to the pair (f,X) on (U,-) which satisfies the condition (4.2) and

f̃(x ∗ (y ∗ (y ∗ x))) succeeds the infimum of f̃((x ∗ y) ∗ z) and f̃(z) for all x, y, z ∈ X.

Example 5.2. Let U = {1, 2, 3, · · · , 9} be ordered as pictured in Figure 4.
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Let X = {0, a, b, c, d} be a set with a binary operation ‘∗’ shown in Table 7.

Table 7. Cayley table for the binary operation ‘∗’

∗ 0 a b c d
0 0 0 0 0 0
a a 0 a 0 a
b b b 0 b 0
c c a c 0 c
d d d d d 0

Then X := (X, ∗, 0) is a BCK-algebra (see [8]). Let (f,X) be a pair on (U,-) where
f is given as follows:

f : X → P(U), x 7→

 {1, 2, 9} if x ∈ {0, b}
{1, 3, 4, 5} if x = d
{3, 5, 6, 7} if x ∈ {a, c}.

Then the inferior mapping f̃ of X related to the pair (f,X) on (U,-) is described

as follows: f̃(0) = f̃(b) = 3, f̃(d) = 6, and f̃(a) = f̃(c) = 8. It is routine to check

that f̃ is a commutative inferior ideal of X .

Theorem 5.3. If X is a BCK-algebra, then every commutative inferior ideal of X
is an inferior ideal of X .

14
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Proof. Let f̃ be a commutative inferior ideal of X where X is a BCK-algebra. Then

f̃(x) = f̃(x ∗ (0 ∗ (0 ∗ x)))

% inf{f̃((x ∗ 0) ∗ z), f̃(z)}

= inf{f̃(x ∗ z), f̃(z)},

that is, f̃(x) succeeds the infimum of f̃(x ∗ z) and f̃(z) for all x, z ∈ X. Thus f̃ is a
inferior ideal of X . �

The following example shows that the converse of Theorem 5.3 is not true in
general.

Example 5.4. Consider the BCK-algebra X and the poset (U,-) which are given
in Examples 5.2 and 3.4, respectively. Let (f,X) be a pair on (U,-), where f is
given as follows:

f : X → P(U), x 7→

 {7, 8} if x = 0
{5, 6, 7} if x = a
{2, 3, 4, 5, 7} if x ∈ {b, c, d}.

Then the inferior mapping f̃ of X is described as follows: f̃(0) = 7, f̃(a) = 3 and

f̃(b) = f̃(c) = f̃(d) = 2. Routine calculations show that f̃ is an inferior ideal of

X . But it is not a commutative inferior ideal of X since f̃(b ∗ (d ∗ (d ∗ b))) does not

succeed the infimum of f̃((b ∗ d) ∗ 0) and f̃(0).

Proposition 5.5. Let f̃ be a commutative inferior ideal of a BCK-algebra X . Then
f̃(x ∗ (y ∗ (y ∗ x))) succeeds f̃(x ∗ y) for all x, y ∈ X.

Proof. Since f̃(x∗ (y ∗ (y ∗x))) succeeds the infimum of f̃((x∗y)∗ z) and f̃(z) for all
x, y, z ∈ X, taking z = 0 and using (4.2) and (2.1) induces the desired result. �

We provide conditions for an inferior ideal to be commutative.

Theorem 5.6. Let f̃ be an inferior ideal of a BCK-algebra X such that f̃(x ∗ (y ∗
(y ∗ x))) succeeds f̃(x ∗ y) for all x, y ∈ X. Then f̃ is a commutative inferior ideal
of X .

Proof. Assume that f̃(x∗(y∗(y∗x))) succeeds f̃(x∗y) for all x, y ∈ X. Then by (4.3),

f̃(x∗y) succeeds the infimum of f̃((x∗y)∗z) and f̃(z). Thus f̃(x∗(y∗(y∗x))) succeeds

the infimum of f̃((x ∗ y) ∗ z) and f̃(z) for all x, y, z ∈ X. So f̃ is a commutative
inferior ideal of X . �

Combining Theorems 4.21 and 5.6, we have the following corollary.

Corollary 5.7. Let f̃ be the inferior mapping of a BCK-algebra X related to the
pair (f,X) on (U,-). If f̃ satisfies (4.2), (4.5) and f̃(x ∗ (y ∗ (y ∗ x))) succeeds

f̃(x ∗ y) for all x, y ∈ X, then f̃ is a commutative inferior ideal of X .

Theorem 5.8. In a commutative BCK-algebra, every inferior ideal is a commutative
inferior ideal.

15
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Proof. Let f̃ be an inferior ideal of X , where X is a commutative BCK-algebra.
Note that

((x ∗ (y ∗ (y ∗ x))) ∗ ((x ∗ y) ∗ z)) ∗ z
= ((x ∗ (y ∗ (y ∗ x))) ∗ z) ∗ ((x ∗ y) ∗ z)
≤ (x ∗ (y ∗ (y ∗ x))) ∗ (x ∗ y)

= (x ∗ (x ∗ y)) ∗ (y ∗ (y ∗ x)) = 0,

that is, (x ∗ (y ∗ (y ∗ x))) ∗ ((x ∗ y) ∗ z) ≤ z for all x, y, z ∈ X. It follows from

Proposition 4.20 that f̃(x ∗ (y ∗ (y ∗ x))) succeeds the infimum of f̃((x ∗ y) ∗ z) and

f̃(z) for all x, y, z ∈ X. Then f̃ is a commutative inferior ideal of X . �

Corollary 5.9. If a BCK-algebra X satisfies the following condition:

(∀x, y ∈ X) (x ∗ (x ∗ y) ≤ y ∗ (y ∗ x)) ,(5.1)

then every inferior ideal is a commutative inferior ideal.

Lemma 5.10 ([8]). Let A be an ideal of a BCK-algebra X . Then A is commutative
if and only if the following assertion hods.

(∀x, y ∈ X) (x ∗ y ∈ A ⇒ x ∗ (y ∗ (y ∗ x)) ∈ A) .(5.2)

Theorem 5.11. If f̃ is a commutative inferior ideal of a BCK-algebra X , then the
upper α-inferior set S(f̃ , α) of f̃ is a commutative ideal of X for all α ∈ U with

S(f̃ , α) 6= ∅.

Proof. Assume that f̃ is a commutative inferior ideal of a BCK-algebra X . Then f̃ is
an inferior ideal of X by Theorem 5.3. Thus S(f̃ , α) is an ideal of X for all α ∈ U . Let

x, y ∈ X be such that x∗y ∈ S(f̃ , α). Then f̃(x∗y) succeeds α. Thus f̃(x∗(y∗(y∗x)))

succeeds α by using Proposition 5.5, that is, x∗ (y ∗ (y ∗x)) ∈ S(f̃ , α). So by Lemma

5.10, S(f̃ , α) is a commutative ideal of X for all α ∈ U with S(f̃ , α) 6= ∅. �

Theorem 5.12. Let f̃ be an inferior mapping of a BCK-algebra X related to the
pair (f,X) on (U,-) such that there exists the infimum of f̃(x) and f̃(y) for all

x, y ∈ X. If then the upper α-inferior set S(f̃ , α) of f̃ is a commutative ideal of X
for all α ∈ U with S(f̃ , α) 6= ∅, then f̃ is a commutative inferior ideal of X .

Proof. Assume that S(f̃ , α) is a commutative ideal of X for all α ∈ U with S(f̃ , α) 6=
∅. Then S(f̃ , α) is an ideal of X . Thus f̃ is an inferior ideal of X by Theorem 4.15.

For any x, y ∈ X, if we take f̃(x∗y) = ε, then x∗y ∈ S(f̃ , ε). It follows from Lemma

5.10 that x ∗ (y ∗ (y ∗ x)) ∈ S(f̃ , ε). Thus f̃(x ∗ (y ∗ (y ∗ x))) succeeds ε = f̃(x ∗ y).

So f̃ is a commutative inferior ideal of X by Theorem 5.6. �

Theorem 5.13. (Extension property) Let f̃ and g̃ be inferior ideals of a BCK-

algebra X such that f̃(0) = g̃(0) and f̃(x) precedes g̃(x) for all x( 6= 0) ∈ X. If f̃ is
a commutative inferior ideal of X , then so is g̃.
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Proof. For any x, y ∈ X, let u = x ∗ y. Then

g̃((x ∗ u) ∗ (y ∗ (y ∗ (x ∗ u)))) % f̃((x ∗ u) ∗ (y ∗ (y ∗ (x ∗ u))))

% f̃((x ∗ u) ∗ y) = f̃((x ∗ y) ∗ u)

= f̃(0) = g̃(0),

which implies from (4.2) and the antisymmetry of - that

g̃((x ∗ u) ∗ (y ∗ (y ∗ (x ∗ u)))) = g̃(0).

Note that

(x ∗ (y ∗ (y ∗ x))) ∗ (x ∗ (y ∗ (y ∗ (x ∗ u))))

≤ (y ∗ (y ∗ (x ∗ u))) ∗ (y ∗ (y ∗ x))

≤ (y ∗ x) ∗ (y ∗ (x ∗ u))

≤ (x ∗ u) ∗ x = 0 ∗ u = 0,

and thus (x ∗ (y ∗ (y ∗ x))) ∗ (x ∗ (y ∗ (y ∗ (x ∗ u)))) = 0. It follows from (4.3), (4.2)
and (2.3) that

g̃(x ∗ (y ∗ (y ∗ x))) % inf{g̃((x ∗ (y ∗ (y ∗ x))) ∗ (x ∗ (y ∗ (y ∗ (x ∗ u))))),

g̃(x ∗ (y ∗ (y ∗ (x ∗ u))))}
= inf{g̃(0), g̃(x ∗ (y ∗ (y ∗ (x ∗ u))))}
= g̃(x ∗ (y ∗ (y ∗ (x ∗ u))))

% inf{g̃((x ∗ (y ∗ (y ∗ (x ∗ u)))) ∗ u), g̃(u)}
= inf{g̃((x ∗ u) ∗ (y ∗ (y ∗ (x ∗ u)))), g̃(u)}
= inf{g̃(0), g̃(u)}
= g̃(u) = g̃(x ∗ y),

that is, g̃(x ∗ (y ∗ (y ∗ x))) succeeds g̃(x ∗ y). So g̃ is a commutative inferior ideal of
X by Theorem 5.6. �
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